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ABSTRACT

In this paper new real-time approaches for three-axis magnetometer sensor calibration are de-
rived. These approaches rely on a conversion of the magnetometer-body and geomagnetic-reference
vectors into an attitude independent observation by using scalar checking. The goal of the full cal-
ibration problem involves the determination of the magnetometer bias vector, scale factors and
non-orthogonality corrections. Although the actual solution to this full calibration problem in-
volves the minimization of a quartic loss function, the problem can be converted into a quadratic
loss function by a centering approximation. This leads to a simple batch linear least squares solu-
tion. In this paper we develop alternative real-time algorithms based on both the extended Kalman
filter and Unscented filter. With these real-time algorithms, a full magnetometer calibration can
now be performed on-orbit during typical spacecraft mission-mode operations. Simulation results
indicate that both algorithms provide accurate integer resolution in real time, but the Unscented fil-
ter is more robust to large initial condition errors than the extended Kalman filter. The algorithms
are also tested using actual data from the Transition Region and Coronal Explorer (TRACE).

INTRODUCTION

Three-axis magnetometers (TAMs) are widely used for onboard spacecraft operations. The basic
concept behind these devices is a fairly simple one, involving a simple magnetic sensor coupled with
an electronics unit to provide data in a digital format. These sensors are useful since they provide
both the direction and magnitude of the magnetic field; they are lightweight, reliable, and have low
power requirements, with no moving parts.1 For these reasons most low-Earth orbiting spacecraft
(below 1000 km) have TAMs as part of their basic sensor package. It is well known that a TAM
can be used to determine a three-axis attitude when coupled with gyros or a dynamic model in
an extended Kalman filter.2 Attitude-knowledge accuracies of 1-2 degrees are common using this
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approach, which can be improved by using well-calibrated sensors to achieve accuracies of 0.1-0.5
degrees.3 An exciting new area of research involves using a TAM together with rate and sun sensor
measurements for orbit (position) estimation. Accuracies on the order of 10 to 100 km can be
achieved, which is within the position-knowledge requirements of many spacecraft.4,5 These studies
clearly show that an integrated magnetometer-based attitude/orbit estimation system can provide
the necessary knowledge requirements of a spacecraft in a single package.

A paramount issue to the attitude accuracy obtained using magnetometer measurements is the
precision of the onboard calibration. The accuracy obtained using a TAM depends on a number
of factors, including: biases, scale factors and non-orthogonality corrections. Scale factors and
non-orthogonality corrections occur because the individual magnetometer axes are not orthonor-
mal, typically due to thermal gradients within the magnetometer or to mechanical stress from the
spacecraft.6 We should note that even with perfectly calibrated (and noise-free!) magnetometers,
inaccuracies still exist due to modelling uncertainty in the Earth’s geomagnetic field. These errors
unfortunately are typically nonlinear and non-Gaussian in nature, which depend on many factors
(see Ref. [7] for more details), and they ultimately limit the obtainable estimation performance us-
ing a TAM. Magnetometer calibration is often accomplished using batch methods, where an entire
set of data must be stored to determine the unknown parameters. This process is often repeated
many times during the lifetime of a spacecraft in order to ensure the best possible precision obtained
from magnetometer measurements.

If an attitude is known accurately, then the magnetometer calibration problem is easy to solve.
However, this is generally not the case. Fortunately, an attitude-independent scalar observation
can be obtained using the norms of the body-measurement and geomagnetic-reference vectors. For
the noise-free case, these norms are identical because the attitude matrix preserves the length of
a vector. This process is also known as “scalar checking”. Unfortunately, even for the simpler
magnetometer-bias determination problem, the loss function to be minimized is quartic in nature.
The most common technique to overcome this difficulty has been proposed by Gambhir, who applies
a “centering” approximation to yield a quadratic loss function that can be minimized using simple
linear least squares.8 Alonso and Shuster expand upon Gambhir’s approach by using a second step
that employs the centered estimate as an initial value to an iterative Gauss-Newton method. Their
algorithm, called “TWOSTEP”,9 has been shown to perform well when other algorithms fail due
to divergence problems. Furthermore, Alonso and Shuster have extended this approach to perform
a complete calibration involving biases as well as scale factors and non-orthogonality corrections.6

One of the current goals of modern-day spacecraft is the ability to perform onboard and au-
tonomous calibrations in real time without ground support. The disadvantage of the TWOSTEP
algorithm is the requirement of a batch of data, which cannot be performed in real time. The
centering approximation is linear and can be made into a sequential (real-time) algorithm, which is
shown in this paper. However, the centering approach has been shown to be suboptimal for many
realistic cases,6 which is also confirmed by the results shown in this paper. The main objective
of this paper is to present and compare two sequential algorithms that are suitable for real-time
applications. The first algorithm uses an extended Kalman filter approach that is developed with
commonly employed estimation techniques. The second algorithm uses an Unscented filter ap-
proach that offers very good results for robust calibration when the initial conditions are poorly
known. Experimental results using data obtained from the TRACE spacecraft show the validity of
the new real-time algorithms to perform onboard and autonomous calibrations.

2



The organization of this paper is as follows: First, the attitude-independent observation model
is summarized. Then, the centered linear algorithm for the solution of the complete magnetometer
calibration problem is shown. This is extended to a sequential process, which can be used for
real-time estimates. Next, a real-time algorithm based on the extended Kalman filter is derived,
followed by an algorithm based on the Unscented filter. Finally, simulation and experimental results
are shown.

MEASUREMENT MODEL AND COVARIANCE

In this section the TAM measurement model is summarized. Also, the attitude-independent
observation as well as the covariance of the determined parameters are shown. More details on
these concepts can be found in Ref. [6]. The magnetometer measurements can be modelled as

Bk = (I3×3 +D)−1(OTAkHk + b + εk), k = 1, 2, . . . , N (1)

where Bk is the measurement of the magnetic field by the magnetometer at time tk, Hk is the
corresponding value of the geomagnetic field with respect to an Earth-fixed coordinate system, Ak

is the unknown attitude matrix of the magnetometer with respect to the Earth-fixed coordinates,
D is an unknown fully-populated symmetric matrix of scale factors (the diagonal elements) and
non-orthogonality corrections (the off-diagonal elements), O is an orthogonal matrix (see Ref. [6]
for a discussion on the physical connotations of this matrix), b is the bias vector, and εk is the
measurement noise vector that is assumed to be a zero-mean Gaussian process with covariance Σk.
Also, In×n is an n × n identity matrix. The goal of the full calibration problem is to estimate D
and b. We first define the following quantities:

E ≡ 2D +D2 (2a)

c ≡ (I3×3 +D)b (2b)

Sk ≡
[

B2
1k

B2
2k

B2
3k

2B1k
B2k

2B1k
B3k

2B2k
B3k

]

(2c)

E ≡
[

E11 E22 E33 E12 E13 E23

]T
(2d)

An attitude-independent observation can be computed from

zk ≡ ||Bk||2 − ||Hk||2 (3a)

= Lkθ
′ − ||b(θ′)||2 + vk (3b)

with

Lk ≡
[

2BT
k −Sk

]

(4a)

θ′ ≡
[

c

E

]

(4b)

vk ≡ 2[(I3×3 +D)Bk − b]T εk − ||εk||2 (4c)

The effective measurement noise, vk, is approximately Gaussian with mean denoted by µk and
variance denoted by σ2

k, each given by

µk ≡ E {vk} = −Tr(Σk) (5a)

σ2
k ≡ E

{

v2
k

}

− µ2
k = 4[(I3×3 +D)Bk − b]TΣk[(I3×3 +D)Bk − b] + 2

(

TrΣ2
k

)

(5b)
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Note that the measurement variance is a function of the unknown parameters. Equation (3a) is
used to compute the actual effective measurement, while Eq. (3b) represents the measurement
model as a function of the unknown parameters E and c.

Once E and c are determined, then a conversion from these parameters to D and b is required.
This is accomplished by first decomposing E as

E = U V UT (6)

where U is an orthogonal matrix and V is a diagonal matrix with elements given by V11, V22 and
V33. We define W to be a diagonal matrix with elements given by

Wjj = −1 +
√

1 + Vjj , j = 1, 2, 3 (7)

Then, the matrix D is given by
D = U W UT (8)

Also, b can be computed using Eq. (2b):

b = (I3×3 +D)−1c (9)

Another quantity of interest is the transformation of the covariance of θ ′, denoted by Pθ′θ′ , to the
covariance of θ, denoted by Pθθ, where

θ ≡
[

b

D

]

(10a)

D ≡
[

D11 D22 D33 D12 D13 D23

]T
(10b)

The covariance Pθ′θ′ is computed from a particular estimation algorithm. The covariance transfor-
mation is given by

Pθθ =

[

∂(b, D)

∂(c, E)

]

Pθ′θ′

[

∂(b, D)

∂(c, E)

]T

(11)

where
[

∂(b, D)

∂(c, E)

]

=

[

∂(c, E)

∂(b, D)

]−1

=





(I3×3 +D) McD(b)

06×3 2I6×6 +MED(D)





−1

(12)

with

MED(D) =







































2D11 0 0 2D12 2D13 0

0 2D22 0 2D12 0 2D23

0 0 2D33 0 2D13 2D23

D12 D12 0 D11 +D22 D23 D13

D13 0 D13 D23 D11 +D33 D13

0 D23 D23 D13 D12 D22 +D33







































(13)
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and

McD(b) =













b1 0 0 b2 b3 0

0 b2 0 b1 0 b3

0 0 b3 0 b1 b2













(14)

Also, 0m×n is an m× n matrix of zeros.

CENTERED ALGORITHM

The measurement model in Eq. (3b) is clearly nonlinear in the unknown parameter vector θ ′.
Therefore, linear least squares cannot be applied directly. However, it is possible to determine
an approximate linear solution by applying a centering approach. First, the following weighted
averages are defined:

L̄ ≡ σ̄2

N
∑

k=1

1

σ2
k

Lk (15a)

z̄ ≡ σ̄2

N
∑

k=1

1

σ2
k

zk (15b)

µ̄ ≡ σ̄2

N
∑

k=1

1

σ2
k

µk (15c)

where

1

σ̄2
≡

N
∑

k=1

1

σ2
k

(16)

Next, the following centered variables are defined:

L̃k ≡ Lk − L̄ (17a)

z̃k ≡ zk − z̄ (17b)

µ̃k ≡ µk − µ̄ (17c)

Then, an approximation for the optimal estimate of θ′, denoted by θ̃′∗, is given by6

θ̃′∗ = P̃θ′θ′

N
∑

k=1

1

σ2
k

(z̃k − µ̃k)L̃
T
k (18a)

P̃θ′θ′ =

[

N
∑

k=1

1

σ2
k

L̃T
k L̃k

]−1

(18b)

where P̃θ′θ′ is the covariance of θ̃′∗. Equations (6)-(9) can now be used to determine D and b.
Also, Eq. (11) can be used to determine an approximation for the covariance of θ∗, replacing Pθ′θ′

with P̃θ′θ′ .

The approximate solution using Eq. (18) uses an entire batch of data. Since this solution is
linear, then a sequential formulation can be derived that provides real-time estimates. A formal
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derivation of this process can be found in Ref. [10]; we only present the final algorithm here. The
sequential formulas for the averaged quantities in Eq. (15) are given by

L̄k+1 =
1

σ2
k+1 + σ̄2

k

(

σ2
k+1L̄k + σ̄2

k+1Lk+1

)

(19a)

z̄k+1 =
1

σ2
k+1 + σ̄2

k

(

σ2
k+1z̄k + σ̄2

k+1zk+1

)

(19b)

µ̄k+1 =
1

σ2
k+1 + σ̄2

k

(

σ2
k+1µ̄k + σ̄2

k+1µk+1

)

(19c)

where
1

σ̄2
k+1

=
1

σ̄2
k

+
1

σ2
k+1

(20)

Finally, the sequential formulas for θ̃′∗ and P̃θ′θ′ are given by

θ̃′∗k+1 = Kkθ̃
′∗
k +

1

σ2
k+1

(z̃k+1 − µ̃k+1) P̃θ′θ′
k+1

L̃T
k+1 (21a)

P̃θ′θ′
k+1

= KkP̃θ′θ′
k

(21b)

where the gain Kk is defined by

Kk ≡ I9×9 − P̃θ′θ′
k
L̃T
k+1

(

L̃k+1P̃θ′θ′
k
L̃T
k+1 + σ2

k+1

)−1

L̃k+1 (22)

Note that only an inverse of a scalar quantity is required in the sequential process. Also, an
approach for determining σ2

k+1 involves using the previous estimate in Eq. (5b). The solutions

for θ̃′∗N and P̃θ′θ′
N

can be shown to be equivalent to the batch solutions given by Eq. (18). The
sequential process can be initialized using a small batch of data. A discussion on the observability
of the centered estimate can be found in Ref. [11]. The TWOSTEP algorithm9 uses the centered
estimate as a starting value for a Gauss-Newton iteration (see Ref. [6] for more details), but this
solution cannot be executed in real time.

KALMAN FILTER FORMULATION

In this section an extended Kalman filter (EKF) is derived to determine θ′ in real time. A
summary of the EKF equations can be found in Refs. [12] and [13]. Since the vector θ ′ is constant,
then the state model is given by

˙̂x(t) = 0 (23)

where x̂ ≡ θ′∗, which is used to denote the optimal state estimate. The measurement model is
given by

zk = h(xk) + vk (24)

where h(xk) ≡ Lkθ
′
k − ||bk(θ

′
k)||2 from Eq. (3b). Since no process noise appears in the state

model of Eq. (23), then the updated quantities (state and covariance) are given by their respective
propagated quantities. The EKF equations then reduce down to

x̂k+1 = x̂k +Kk[zk − h(x̂k)] (25a)

Pk+1 = [I9×9 −KkHk(x̂k)]Pk (25b)

Kk = PkH
T
k (x̂k)

[

Hk(x̂k)PkH
T
k (x̂k) + σ2

k(x̂k)
]−1

(25c)

6



where P ≡ Pθ′θ′ . The state dependence of the measurement variance, σ2
k, is shown through Eq. (5b).

The 1×9 matrix H(x) is the partial derivative of h(x) with respect to x. This quantity is given by

H(x) = L− ∂||b(θ′)||2
∂θ′

(26)

The partial derivatives of ||b(θ′)||2 are given by6

∂||b(θ′)||2
∂cm

= 2
[

(I3×3 + E)−1c
]

m
(27a)

∂||b(θ′)||2
∂Emn

= −(2− δmn)
[

(I3×3 + E)−1c
]

m

[

(I3×3 + E)−1c
]

n
(27b)

where
[

(I3×3 + E)−1c
]

m
denotes the mth element of (I3×3 + E)−1c, and δmn is the Kronecker

symbol.

UNSCENTED FILTER FORMULATION

In this section a new approach, developed by Julier, Uhlmann and Durrant-Whyte,14 is shown
as an alternative to the extended Kalman filter. This approach, which they called the Unscented
filter (UF), typically involves more computations than the extended Kalman filter, but has several
advantages, including: 1) the expected error is lower than the extended Kalman filter, 2) the
new filter can be applied to non-differentiable functions, 3) the new filter avoids the derivation
of Jacobian matrices, and 4) the new filter is valid to higher-order expansions than the standard
extended Kalman filter. The Unscented filter works on the premise that with a fixed number of
parameters it should be easier to approximate a Gaussian distribution than to approximate an
arbitrary nonlinear function. The filter presented in Ref. [14] is derived for discrete-time nonlinear
equations, where the system model is given by

xk+1 = f(xk, wk, k) (28a)

zk = h(xk, vk, k) (28b)

Note that a continuous-time model can always be written using Eq. (28a) through an appropriate
numerical integration scheme. The vectors wk and vk are zero-mean Gaussian noise processes
with covariances given by Qk and Rk, respectively. The Kalman filter update equations are first
rewritten as15

x̂+
k = x̂−

k +Kkυk (29a)

P+
k = P−

k −KkP
υυ
k KT

k (29b)

where υk is the innovations process, given by

υk ≡ zk − ẑ−k

= zk − h(x̂−
k , k)

(30)

The covariance of υk is defined by P υυ
k . The gain Kk is computed by

Kk = P xz
k (P υυ

k )−1 (31)

where P xz
k is the cross-correlation matrix between x̂−

k and ẑ−k .
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The Unscented filter uses a different propagation than the standard extended Kalman filter.
Given an n × n covariance matrix P , a set of order n points can be generated from the columns
(or rows) of the matrices ±

√
nP . The set of points is zero-mean, but if the distribution has mean

µ, then simply adding µ to each of the points yields a symmetric set of 2n points having the
desired mean and covariance.14 Due to the symmetric nature of this set, its odd central moments
are zero, so its first three moments are the same as the original Gaussian distribution. This is
the foundation for the Unscented filter. A complete derivation of this filter is beyond the scope of
the present paper, so only the final results are presented here. Various methods can be used to
handle the process noise and measurement noise in the Unscented filter. One approach involves
augmenting the covariance matrix with

P a
k =













P+
k P xw

k P xv
k

(P xw
k )T Qk Pwv

k

(P xv
k )T (Pwv

k )T Rk













(32)

where P xw
k is the correlation between the state error and process noise, P xv

k is the correlation
between the state error and measurement noise, and Pwv

k is the correlation between the process
noise and measurement noise, which are all zero for most systems. Augmenting the covariance
requires the computation of 2(q + l) additional sigma points (where q is the dimension of wk and
l is the dimension of vk, which does not necessarily have to be the same dimension, m, as the
output in this case), but the effects of the process and measurement noise in terms of the impact
on the mean and covariance are introduced with the same order of accuracy as the uncertainty in
the state.

The general formulation for the propagation equations are given as follows. First, the following
set of sigma points are computed:

σk ← 2L columns from ±γ
√

P a
k (33a)

χa
k(0) = x̂ak (33b)

χa
k(i) = σk(i) + x̂ak (33c)

where L = n+ q + l and x̂ak is an augmented state defined by

xak =





xk
wk

vk



 , x̂ak =





x̂k
0q×1

0m×1



 (34)

The parameter γ is given by
γ =
√
L+ λ (35)

where the composite scaling parameter, λ, is given by

λ = α2(L+ κ)− L (36)

The constant α determines the spread of the sigma points and is usually set to a small positive
value (e.g. 1 × 10−4 ≤ α ≤ 1).16 Also, the parameter κ is usually given by κ = 3 − L. Efficient
methods to compute the matrix square root can be found by using the Cholesky decomposition.17
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If an orthogonal matrix square root is used, then the sigma points lie along the eigenvectors of the
covariance matrix. Note that there are a total of 2L values for σk (the positive and negative square
roots). The transformed set of sigma points are evaluated for each of the points by

χk+1(i) = f(χx
k(i), χ

w
k (i), k) (37)

where χx
k(i) is a vector of the first n elements of χa

k(i), and χ
w
k (i) is a vector of the next q elements

of χa
k(i), with

χa
k(i) =





χx
k(i)

χw
k (i)
χv
k(i)



 (38)

where χv
k(i) is a vector of the last l elements of χa

k(i), which will be used to compute the output
covariance. The following weights are now defined:

Wmean
0 =

λ

L+ λ
(39a)

W cov
0 =

λ

L+ λ
+ (1− α2 + β) (39b)

Wmean
i = W cov

i =
1

2(L+ λ)
, i = 1, 2, . . . , 2L (39c)

where β is used to incorporate prior knowledge of the distribution (for Gaussian distributions β = 2
is optimal).

The predicted mean for the state estimate is calculated using a weighted sum of the points
χx
k+1(i), which is given by

x̂−
k+1 =

2L
∑

i=0

Wmean
i χx

k+1(i) (40)

The predicted covariance is given by

P−
k+1 =

2L
∑

i=0

W cov
i [χx

k+1(i)− x̂−
k+1] [χ

x
k+1(i)− x̂−

k+1]
T (41)

The mean observation is given by

ẑ−k+1 =
2L
∑

i=0

Wmean
i ζk+1(i) (42)

where
ζk+1(i) = h(χx

k+1(i), χ
v
k+1(i), k + 1) (43)

The output covariance is given by

P zz
k+1 =

2L
∑

i=0

W cov
i [ζk+1(i)− ẑ−k+1] [ζk+1(i)− ẑ−k+1]

T (44)

Then the innovations covariance is simply given by

P υυ
k+1 = P zz

k+1 (45)
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Finally the cross correlation matrix is determined using

P xz
k+1 =

2L
∑

i=0

W cov
i [χx

k+1(i)− x̂−
k+1] [ζk+1(i)− ẑ−k+1]

T (46)

The filter gain is then computed using Eq. (31), and the state vector can now be updated using
Eq. (29). Even though propagations on the order of 2n are required for the UF, the computations
may be comparable to the EKF (especially if the continuous-time covariance equation needs to
be integrated and a numerical Jacobian matrix is evaluated). Also, if the measurement noise, vk,
appears linearly in the output (with l = m), then the augmented state can be reduced because the
system state does not need to augmented with the measurement noise. In this case the covariance
of the measurement error is simply added to the innovations covariance, with P υυ

k+1 = P zz
k+1 +Rk+1.

This can greatly reduce the computational requirements in the Unscented filter. Furthermore, a
square root version of the UF is presented in Ref. [16] that avoids the need to re-factorize at each
step.

The implementation of the UF for real-time magnetometer calibration proceeds as follows. Two
approaches in the UF are presented here. The first uses the same concept for the measurement-error
variance as with the EKF, where the UF measurement-error variance is given by Rk = σ2

k(x̂k). In
this approach the augmented state vector is simply given by the state, so that a decomposition
of a 9 × 9 matrix is only required, with P a

k = P+
k . Since the state model estimate is given by

˙̂x(t) = 0, then x−
k+1 = x+

k and P−
k+1 = P+

k , and Eqs. (40) and (41) are not needed (note: Qk = 0).
This significantly reduces the computational requirements in the UF. Equation (43) is computed
using the measurement model in Eq. (3b), with h(xk, vk, k) ≡ Lkθ

′
k − ||bk(θ

′
k)||2 + vk. Also, the

innovations covariance is given by P υυ
k+1 = P zz

k+1+Rk+1. Hence, the only essential difference between
the EKF and UF formulations is in the computation of the innovations covariance, where the EKF
uses a first-order expansion to compute this quantity, while the UF uses a nonlinear transformation
to compute this quantity. The second approach for the UF uses the measurement noise model of
Eq. (3b) with an augmented vector given by the state and ε in Eq. (4c). The augmented covariance
is now given by

P a
k =





P+
k 09×3

03×9 Σk



 (47)

Therefore, a decomposition of a 12 × 12 matrix is now required. Again, since the state model
estimate is given by ˙̂x(t) = 0, then x−

k+1 = x+
k and P−

k+1 = P+
k , and Eqs. (40) and (41) are not

needed. Also, the innovations covariance is computed using Eqs. (44) and (45) in this approach.
In the strictest sense this approach is more optimal than the first approach because the effect of
the nonlinear-appearing measurement noise is directly used in the UF. But, the computational
requirements are vastly increased due to the decomposition of a higher dimensional augmented
matrix.

SIMULATION AND EXPERIMENTAL RESULTS

In this section results of the EKF and UF formulations are shown using both simulated and
experimental data. The simulated spacecraft is modelled after the Tropical Rainfall Measurement
Mission (TRMM) spacecraft. This is an Earth-pointing spacecraft (spinning about its y-axis)
in low-Earth orbit (currently near-circular at 402 km), with an inclination of 35◦. The attitude
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Table 1 Simulation Results

Truth TWOSTEP Centered EKF UF
b1 50 mG 49.9620± 0.4320 49.9700± 0.5525 49.4029± 2.2625 49.7289± 0.4328
b2 30 mG 29.8174± 0.4258 29.5937± 5.5779 19.5297± 2.2044 29.4657± 0.3598
b3 60 mG 60.0331± 0.3165 60.0456± 0.3165 50.3248± 1.2340 59.4561± 0.2331
D11 0.05 0.0500± 0.0001 0.0500± 0.0001 0.0492± 0.0008 0.0499± 0.0001
D22 0.10 0.0993± 0.0014 0.0988± 0.0123 0.0736± 0.0075 0.0949± 0.0013
D33 0.05 0.0500± 0.0001 0.0500± 0.0001 0.0481± 0.0004 0.0499± 0.0001
D12 0.05 0.0499± 0.0010 0.0499± 0.0011 0.0313± 0.0051 0.0486± 0.0010
D13 0.05 0.0499± 0.0001 0.0499± 0.0001 0.0440± 0.0006 0.0495± 0.0002
D23 0.05 0.0501± 0.0007 0.0501± 0.0007 0.0287± 0.0030 0.0487± 0.0006

determination system consists of an Earth Sensor Assembly (ESA), a TAM, Digital Sun Sensors
(DSS), Coarse Sun Sensors, and gyroscopic rate sensors. Currently, the ESA data is unreliable,
so only the TAM and DSS are used as attitude sensors combined with gyros in an EKF (see
Ref. [18] for more details). The geomagnetic field is simulated using a 10th-order International
Geomagnetic Reference Field model.7 The magnetometer-body and geomagnetic-reference vectors
for the simulated runs each have a magnitude of about 500 milliGauss (mG). The measurement
noise is assumed to be white and Gaussian, and the covariance is taken to be isotropic with a
standard deviation of 0.5 mG. The measurements are sampled every 10 seconds over an 8-hour
span. The true values for the bias b and elements of the D matrix are shown in Table 1. Large
values for the biases are used to test the robustness of the EKF and UF algorithms.

Thirty runs have been executed, which provide a Monte-Carlo type simulation. Shown in Table
1 are the averaged batch solutions given by the TWOSTEP and centered algorithms, each with
their maximum deviations obtained. Since the TWOSTEP approach is the most rigorous, all
comparisons are made with respect to this algorithm. The centered algorithm does a fairly good
job at estimating all parameters, with the exception of b2. This parameter corresponds to the least
observable variable, which results in a wide variation from the averaged value.

The EKF and UF are both executed at time t = 0 using initial conditions of zeros for all states.
The initial covariance matrix is diagonal, given by

P0 =





500I3×3 03×6

06×3 0.001I6×6



 (48)

This assumes a 3σ bound on the initial bias estimates to be about 70 mG and a 3σ bound on the
initial estimates for the elements of the D matrix to be about 0.1. The parameters used in the UF
are α = 0.1, β = 2, κ = 3 − L, and L = 9 when the 9 × 9 matrix decomposition approach is used
(L = 12 for the augmented approach). The two UF approaches (one uses the current state estimate
in the measurement-error variance calculation, which requires a 9× 9 matrix decomposition, while
the other appends the state vector to include the measurement noise, which requires a 12×12 matrix
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(i) EKF and UF Estimates
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(ii) 3σ Bounds

Figure 1 EKF and UF Estimates and 3σ Bounds for the Parameter b3

decomposition) give identical results. Therefore, no apparent advantages to using the augmented
approach in the UF is seen. The EKF and UF solutions at the final time are shown in Table 1.
The EKF does not converge to the correct solution for many of the parameters, while the UF gave
results that are just as good as the TWOSTEP solutions. Also, the maximum deviations for the
UF are much smaller than for the EKF and centered algorithm.

Figure 1(i) shows the EKF and UF estimates for the parameter b3. The EKF does not converge
to the correct solution during the 8-hour simulated run. This is due to the fact that the first-order
approximation in the EKF does not adequately capture the large initial errors. The biggest concern
with the EKF solutions is the confidence of the results dictated by the 3σ bounds, with b3 shown
in Figure 1(ii). In fact, this plot shows that the EKF is performing better than the UF. This
can certainly provide some misleading results. However, unlike the EKF, the maximum deviations
associated with the UF shown in Table 1 are within the 3σ bounds for all the parameters. This
indicates that the UF is performing in an optimal manner. But, the UF algorithm comes with
a computational cost, mainly due to the covariance decomposition. Our experience has shown
that the UF algorithm is about 2 times slower than the EKF algorithm. Still, the performance
enhancements of the UF over the EKF may outweigh the increased computational costs.

Next, experimental results from the TRACE spacecraft are shown. This is an Sun-synchronous
spacecraft in low-Earth orbit (currently near-circular at 402 km). The attitude determination
system consists of a TAM, DSS and gyroscopic rate sensors. The data collected for the spacecraft
is given during an inertial pointing mode. As discussed previously the errors associated with the
geomagnetic field model are typically nonlinear and non-Gaussian in nature. This violates the
assumptions for all the estimators shown in this paper. We still assume that the measurement
noise is white and Gaussian, but the standard deviation is now increased to a value of 3 mG, which
bounds the errors in a practical sense. The measurements are sampled every 3 seconds over a
6-hour span. Figure 2(i) shows the magnetic field reference for all axes, and Figure 2(ii) shows the
actual TAM measurements.

12
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(ii) Magnetometer Measurements
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(iii) Bias Estimates
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(iv) 3σ Bounds

Figure 2 Reference and Measurements from TRACE, and Bias Estimates and 3σ Bounds

The EKF and UF are both executed at time t = 0 using initial conditions of zeros for all states.
The initial covariance matrix is diagonal, given by

P0 =





10I3×3 03×6

06×3 0.001I6×6



 (49)

This assumes a 3σ bound on the initial bias estimates to be about 10 mG and a 3σ bound on the
initial estimates for the elements of the D matrix to be about 0.1. The parameters used in the
UF are α = 0.1, β = 2, κ = 3 − L, and L = 9 when the 9 × 9 matrix decomposition approach
is used (L = 12 for the augmented approach). Once again no advantages to using the augmented
approach in the UF are seen. For the experimental data the solutions obtained using TWOSTEP,
the EKF and UF algorithms are nearly identical. This is most likely due to the well-behaved nature
of the data (i.e., the calibration errors are small). However, the sequential centered algorithm gave

13



0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

Time (Hr)

N
or

m
R

es
id

u
al

(m
G

)

Figure 3 Norm Residual Between Body Estimates and Reference Vectors

slightly different results, which indicates that this approach is not truly optimal, even when small
errors are present. The centered algorithm final results are given by

b∗ =
[

1.4007 −8.7350 −3.7927
]T

(50a)

D∗ =
[

0.0086 0.0437 0.0065 0.0006 0.0035 −0.0120
]T

(50b)

The TWOSTEP, EKF and UF final results are given by

b∗ =
[

1.6056 −8.4140 −4.6123
]T

(51a)

D∗ =
[

0.0123 0.0181 0.0040 −0.0005 0.0038 −0.0019
]T

(51b)

These results indicate that the EKF and UF algorithms should be used over the sequential centered
algorithm for real-time calibration purposes. Figure 2(iii) shows EKF estimates for the bias vector
b. Another advantage of a real-time approach is the convergence properties of the particular
estimator. From Figure 2(iii) good convergence is seen for all the parameters, which indicates that
the calibration parameters are well behaved (i.e., truly constant in a practical sense). Figure 2(iv)
shows the 3σ bounds for the bias estimates. This at least qualitatively indicates that good parameter
estimates are achieved since these bounds are fairly small compared to the TAM measurements.
Similar results are obtained for the D matrix parameters.

An investigation of the residuals between the norm of the estimated vector, using the calibrated
parameters, and the geomagnetic-reference vector is useful to check the consistency of the results. A
plot of this residual is shown in Figure 3. From this plot the residuals are slightly biased by about 2
mG and have some non-Gaussian components. This clearly shows the nonlinear and non-Gaussian
nature of the geomagnetic field model. A spectrum analysis shows the presence of sinusoidal motions
with periods equivalent to the orbital period (≈ 90 min) and higher-order harmonics (see Ref. [19]
for a model of this process). Still, the residuals are small enough to indicate that good results are
obtained from the real-time calibration algorithms developed in this paper.
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CONCLUSIONS

In this paper two new real-time algorithms based on the extended Kalman filter and Unscented
filter were developed for the calibration of three-axis magnetometers. Also, a sequential algorithm
was shown that was based on a linear least squares approach using a centering approximation. Two
different approaches have also been shown in the Unscented filter design. One uses the current state
estimate in the measurement-error variance calculation, which requires a 9×9 matrix decomposition,
while the other appends the state vector to include the nonlinear-appearing measurement noise,
which requires a 12 × 12 matrix decomposition. Simulation and experimental results indicated
that for this problem, both Unscented filter approaches gave identical results. So appending the
state vector is not required, which significantly reduces the computational requirements in the
Unscented filter. Simulation test cases also showed that the performance of the Unscented filter
is significantly better than the standard extended Kalman filter and sequential centered algorithm
for large initialization errors. Experimental results indicated that the EKF and UF algorithms
should be used over the sequential centered algorithm for real-time calibration purposes, even
when small errors are present. However, the Unscented filter algorithm is recommended for actual
implementation when computational requirements are not burdensome.
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